Loren drove 200 miles at a certain rate, and his wife, Lois, drove 100 miles at a rate 10 mph slower. If Loren had driven for the entire trip, they would have arrived 30 minutes sooner. What was Loren's rate? 45 mph 50 mph 55 mph

QUESTION POSTED AT 28/05/2020 - 10:15 PM

Related questions

The lengths of three sides of a quadrilateral are shown below: Side 1: 3y2 + 2y − 6 Side 2: 3y − 7 + 4y2 Side 3: −8 + 5y2 + 4y The perimeter of the quadrilateral is 4y3 + 18y2 + 16y − 26. Part A: What is the total length of sides 1, 2, and 3 of the quadrilateral? (4 points) Part B: What is the length of the fourth side of the quadrilateral? (4 points) Part C: Do the answers for Part A and Part B show that the polynomials are closed under addition and subtraction? Justify your answer. (2 points) QUESTION 2: A rectangle has sides measuring (4x + 5) units and (3x + 10) units. Part A: What is the expression that represents the area of the rectangle? Show your work to receive full credit. (4 points) Part B: What are the degree and classification of the expression obtained in Part A? (3 points) Part C: How does Part A demonstrate the closure property for polynomials? (3 points) QUESTION 3: A bucket of paint has spilled on a tile floor. The paint flow can be expressed with the function p(t) = 5t, where t represents time in minutes and p represents how far the paint is spreading. The flowing paint is creating a circular pattern on the tile. The area of the pattern can be expressed as A(p) = πp2. Part A: Find the area of the circle of spilled paint as a function of time, or A[p(t)]. Show your work. (6 points) Part B: How large is the area of spilled paint after 2 minutes? You may use 3.14 to approximate π in this problem. (4 points)

QUESTION POSTED AT 01/06/2020 - 04:46 PM